4x^2+((8.6*10^-4)x)-95.2=0

Simple and best practice solution for 4x^2+((8.6*10^-4)x)-95.2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x^2+((8.6*10^-4)x)-95.2=0 equation:



4x^2+((8.6*10^-4)x)-95.2=0
We calculate terms in parentheses: +((8.6*10^-4)x), so:
(8.6*10^-4)x
We multiply parentheses
86x^2-4x
Back to the equation:
+(86x^2-4x)
We get rid of parentheses
4x^2+86x^2-4x-95.2=0
We add all the numbers together, and all the variables
90x^2-4x-95.2=0
a = 90; b = -4; c = -95.2;
Δ = b2-4ac
Δ = -42-4·90·(-95.2)
Δ = 34288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{34288}=\sqrt{16*2143}=\sqrt{16}*\sqrt{2143}=4\sqrt{2143}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2143}}{2*90}=\frac{4-4\sqrt{2143}}{180} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2143}}{2*90}=\frac{4+4\sqrt{2143}}{180} $

See similar equations:

| 2n10=30 | | 31+X=3(5xX) | | P(x)=6x+5 | | 7x-6=12-2x  | | 7x-6=12+2x  | | 10+4(3p+10)=18  | | 8+2x=5x-2 | | 5x=-7x+2 | | 6x-3(x-11)=3 | | 7p=7p-2 | | 4x(-6x-5)+16=33-6x | | 7x+4+90=4x+9+90 | | X+18+x+11=15 | | ((2m/5))=1/3(2m-12) | | 8x-7=4x+20 | | X+18+x+11=180 | | 2/5+5t=7t-6/35 | | 5x=-7+2 | | 1=x+10÷10¶3 | | -2t^2-16t+30=0 | | 5(-2x+3)=25 | | 150=e+12 | | 24x^2-12x-36x=0 | | 24x^2-12x=36x | | 29y=y | | 5(5y/6)–4y=8 | | 9=-3+v/2 | | 21x+2-14x+3=180 | | 14x+6-10x+6=180 | | 2v-4=-1 | | 1/4(24x+4)+5=4 | | 7x+17/2=15. |

Equations solver categories